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Abstract

The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle.
This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and
involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation
is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry
and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks
for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are
used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral
equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport
of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is
achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides,
as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are com-
pared with benchmarked standards.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Determining the time dependent balance of iso-
topes in a nuclear reactor is of central importance
in modeling nuclear fuel cycles. The evolving compo-
sition of reactor fuel during burnup affects its reactiv-
ity, material and chemical properties, as well as the
radiative environment to which structural and clad-
ding elements are subjected. In addition, spent fuel
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isotopic composition is the dominant factor deter-
mining the radiation field and head load under which
storage and disposal materials must operate. Because
of this, computing the isotopic flows through a reac-
tor is of central importance in high level fuel cycle
analyses done to determine the effects of different fuel
cycle options.

The isotope composition of reactor fuel depends
on the spatial and spectral distribution of neutrons
in the core and many large software packages exist
that generate these flux profiles [1–4]. Most do so
by solving approximations to the neutron diffusion
or transport equations and the various methods by
.
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which this is done are discussed in several texts [5–8].
A traditional approach for solving a burnup prob-
lem would use one of the software packages
mentioned above to produce few- or one-group cross
sections amenable to ORIGEN2 burnup calcula-
tions. ORIGEN2 would then be used to take a bur-
nup step of a few MWd/kg, at which time one-group
cross sections, and hence the spectrum, would be
re-computed. This technique, while somewhat cum-
bersome, is of great value for high-fidelity burnup
calculations. However, a simplified approach for
calculating the spatial and spectral neutron distribu-
tion in a reactor using a small number of input
parameters with minimum setup and execution time,
and amenable to tracking isotope concentrations
over the lifetime of a fuel batch, is missing from
the literature.

Most neutronics packages compute the energy
dependence of the neutron flux using one of
two methods. A multigroup formulation is often
employed in which the energy spectrum is discret-
ized into tens or hundreds of groups [9–11]. The
flux, nuclear cross sections and group-to-group
transfer functions are averaged over each group
in a manner that aims to preserve the correct
within-group interaction rate. The energy-depen-
dent equation of neutron conservation is then
written as a set of coupled algebraic equations. Typ-
ically the control absorber concentration is iterated
upon, or the multiplication factor, keff, is treated as
an eigenvalue. Alternately, a continuous method is
sometimes employed which aims to avoid complica-
tions that arise in calculations involving discontinu-
ous functions such as the scattering kernel [12]. The
idea is to formulate approximate differential equa-
tions for a smooth, slowly varying slowing-down
density, q [n/cm3/s].

Available neutronics packages often compute the
spatial dependence of the neutron flux using ‘nodal
methods’ in which the reactor is divided into macro-
scopic regions, i.e. nodes, for which detailed calcula-
tions of the flux distribution are carried out [9–11].
Nodes of a similar type are often assumed to have
similar flux profiles and boundary values between
adjacent nodes are matched to preserve continuity.
Codes typically use finite differencing to spatially dis-
cretize the nodes, and then implement either an
approximation to the diffusion [13] or transport
equations [10]. A necessary condition for stability is
that the grid spacing be smaller than a length scale
characterized by the shortest group mean free path
which can be the order of 1 cm when the diffusion
equation is being discretized. Because of this, it is
often impractical to solve for the full three-dimen-
sional flux profile via finite difference methods. Typ-
ically the dimensionality of the problem is reduced,
via the definition of an equivalent 1-d or 2-d problem,
or a 3-d calculation is performed over only a small
spatial region. If the transport equation is being
implemented ‘discrete ordinates’ techniques are used
to discretize its angular dependence, evaluating it at
only a few set directions (ordinates) [12]. Quadrature
is then used to reproduce the full equation.

Monte Carlo packages offer an alternate method
for determining both spatial and spectral neutron
distributions in a reactor core [14]. Here, neutron
histories are directly simulated from birth, usually
via isotropic emission from fission. The fission
source is generated by sampling a Bayesian statisti-
cal distribution in the energy, position and direction
variables. A neutron is followed from birth, through
the slowing down process, until its final absorption
or escape. Treatment is as exact as the geometric
and physical inputs allow. Naturally, a large (and
problem-dependent) number of histories must be
generated to reduce variance to within specified
guidelines. Variance reduction may be accelerated
by attaching weights to individual neutron histories
and is often carried out on the basis of an adjoint or
importance function obtained beforehand by deter-
ministic means.

We consider a different approach from the above
where the spatial dependence of the neutron flux is
computed using a combination of collision probabil-
ity and equivalence theory. This rests on the premise
that detailed spatial variations in the neutron flux
are unimportant provided that average cross sec-
tions, hRi, and fluxes, /ave, can be derived that pre-
serve interaction rates within macroscopic regions.
The condition imposed by equivalence theory is that,
over a large heterogeneous region V

hRi/ave ¼
1

V

Z
V

dV RðrÞ/ðrÞ: ð1Þ

Collision probability theory then models the
transport of neutrons from region-to-region using
transmission and escape probabilities. The overall
aim is to reduce the spatial dependence of the prob-
lem to that of only a few regions. Such an approach
was used in the WIMSD-5 code developed by the
British [15] and was intended primarily for static
neutronics calculations on thermal reactors. We
extend this approach to consider the time depen-
dence of the spatial and energy-dependent neutron
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flux in a reactor core in a way that is amenable to
rapid computation on a PC. The concentration of
24 actinides is tracked through time and the model
accepts as inputs fuel element geometry and compo-
sition, moderator/coolant geometry and composi-
tion, reactor geometry, fuel residence time and
target discharge burnup.

2. Methods: Overview

In order to simplify analysis, the spatial and spec-
tral dependence of the neutron transport equation
are decoupled and the energy spectrum is modeled
using a multigroup formulation. The reactor itself
is viewed as being comprised of two regions, fuel
and moderator/coolant, with the movement of
neutrons from one to the other accounted for using
escape and transmission probabilities. Within each
region the flux is assumed to take on an average
value which considerably simplifies the analysis.
The objective then is not to accurately model the
spatial dependence of the flux, but instead its energy
spectrum and through this the time dependent con-
centration of isotopes in the reactor as a whole. Two
methods are available for modeling reactivity con-
trol. A burnable poison may be introduced in the
fuel, and/or the model may adjust a time-dependent,
system-wide control absorber to achieve criticality.

The resulting model is demonstrated with a cal-
culation of the neutron spectrum for a reactor with
the specifications given by the 1994 Burnup Credit
Criticality Benchmark compiled by the Organiza-
tion for Economic Cooperation and Development
along with the Nuclear Energy Agency [16].

2.1. Decoupling the spatial and spectral dependence

of the neutron transport equation

The neutron transport equation can be written

X � r/ðr;E;XÞ þ Rt/ðr;E;XÞ

¼
Z

4p
dX0

Z 1

0

dE0Rsðr;E0 ! E;X0 ! XÞ/ðr;E;X0Þ

þ vðEÞ
4p

Z 1

0

dE0tRfðr;E0Þ/ðr;E0Þ: ð2Þ

Here X is the directional vector [ster], r the posi-
tional vector [cm], /(r,E,X) is the neutron flux per
unit energy per unit solid angle [n/cm2/ster/eV/s],
/(r,E) is the neutron flux per unit energy [n/cm2/
s], Rt(r,E,X) is the total macroscopic cross section
[1/cm], Rs(E

0 ! E,X 0 ! X) is the scattering cross
section from (E 0,X 0) into (E,X) [1/cm/eV/ster],
Rf(r,E 0) is the macroscopic fission cross section per
unit energy [1/cm/eV], v(E) is the probability per
unit energy that a fission neutron will be born at
energy E [1/eV] and m(r,E) is the neutron yield per
fission.

In practice, the transport equation is formulated
as a set of coupled integro-differential equations. To
reduce the problem of solving these it is necessary to
decouple the spatial and energy variables, this is
done by removing the angular dependence of the
flux in Eq. (2). For purposes of energy transfer,
we preserve the isotropic and linearly anisotropic
components of the elastic scattering kernel in the
center-of-mass system. In order to decouple space
and energy in the transport equation, we adopt
the simplest approximation, replacing the total
cross section with a transport cross section of the
form

Rtr ¼ Ra þ ð1� �lÞRs; ð3Þ

where l is the average value of the cosine of the
scattering angle. Hence, scattering events devolve
into a neglected forward component and an isotro-
pic component governed by Rtr. Values of l are
readily obtainable from the Evaluated Nuclear
Data File (ENDF) data base maintained by the
National Nuclear Data Center, Brookhaven
National Laboratory.

To model the transport of neutrons between the
fuel and moderator/coolant, an effective cell consist-
ing of a homogeneous fuel element surrounded by a
region of moderator/coolant is constructed. The
spatial dependence of the flux is treated by taking
the neutron number density in the respective fuel
and moderator/coolant regions to be uniform. This
simplification greatly facilitates spatial transport
computations, as it allows us to apply the reciproc-
ity theorem (see below). It is important to empha-
size that the goal is not to accurately model the
spatial dependence of the flux, but instead its spec-
tral dependence and through this the time depen-
dent concentration of isotopes in the reactor as a
whole.

The transport of neutrons between regions is
then governed by transmission and escape probabil-
ities, themselves functions of energy, which are
defined in Table 1. Using these, we let P0 be the
probability that a neutron appearing in the fuel at
energy E will undergo its next interaction in the
moderator/coolant
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Fig. 1. A conceptual unit cell.

Table 1
Definition of escape and transmission probabilities

Term Definition Assumptions

P0 Probability that a neutron, having has its last interaction in the fuel,
will escape the fuel without further interaction

Uniform isotropic source black moderator region

T0 Probability that a neutron entering the fuel region is
transmitted without interaction

Cosine surface source at boundary
black moderator region

P1 Probability that a neutron, having had its last interaction in the
moderator, will escape the without further interaction

Uniform isotropic source black fuel pin

T1 Probability that a neutron entering the moderator is
transmitted without interaction (Dancoff factor)

Cosine surface source at boundary black fuel pin

Definition of the respective probabilities for the transport of neutrons between fuel and moderator/coolant.
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P0 ¼ P 0ð1� T 1Þ þ P 0T 0T 1ð1� T 1Þ þ � � �

¼
X1
m¼0

P 0ð1� T 1ÞðT 0T 1Þm ¼ P 0ð1� T 1Þ
1

1� T 0T 1

:

ð4Þ

Similarly, P1 is the probability that a neutron of en-
ergy E appearing in the moderator undergoes its
next interaction in the fuel

P1 ¼ P 1ð1� T 0Þ
1

1� T 0T 1

: ð5Þ

It can be shown [6] that P1 and P0 satisfy a reci-
procity relationship of the form

P0V 0R0 ¼ P1V 1R1; ð6Þ

where Vi is the volume of region i (‘0’ for fuel, ‘1’ for
moderator/coolant) and Ri is the (spatially aver-
aged) macroscopic total cross section within the
respective region. We observe that this relationship
obviates the need to separately calculate P1.

The relationship between P0 and P1 and the
transmission and escape probabilities can alterna-
tively be obtained for an arbitrary lattice structure
as outlined below. This derivation shows that one
can, in theory, relax the assumptions of uniform
source and flux distributions within the regions.
This also implies that successive transmissions
through fuel and moderator need not have the same
T0 and T1. Consider the element pictured in Fig. 1.
Monoenergetic sources are distributed in Region 0
of this element. The sources can be thought of as
stemming from fission and/or inscattering to the
energy being considered. The neutron currents J+

and J� [n/cm2/s] at the interface are defined in the
usual way, and we denote the rates [n/s] at which
neutrons cross the interface by hJ+Ai and hJ�Ai.
Similarly the rate of neutron production [n/s] is
written as hS0V0i. Then, it follows from the defini-
tions of P0 and T0 that
hJþAi ¼ hS0V 0iP 0 þ hJ AiT 0 ð7Þ

and

hJ Ai ¼ hJþAiT 1: ð8Þ

Likewise, the definition of P0 implies that

hS0V 0iP0 ¼ hJþAi � hJ Ai: ð9Þ

This equates the production rate of neutrons in
Region 1 multiplied by the probability that a neu-
tron born in Region 0 will experience its next inter-
action in Region 1 to the net number of neutrons
per second crossing the boundary between the
regions. Treating hJ+Ai, hJ�Ai and S0V0 as inde-
pendent variables, we write the above system as

P 0 T 0 �1

0 �1 T 1

P0 1 �1

2
64

3
75
hS0V 0i
hJ Ai
hJþAi

0
B@

1
CA ¼

0

0

0

0
B@

1
CA: ð10Þ
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For a solution to exist, the determinant of the ma-
trix of cofactors must be zero, from which equation
(4) immediately follows. The derivation of P1 is
analogous if one instead places the source hS1V1i
in Region 1. In practice, the difficulty of calculating
the P and T probabilities limits one to simple geom-
etries and/or uniform source distributions. Our ap-
proach is discussed in the following section.

Neutron leakage is handled by use of an absorp-
tive term of the form D(E)B2/(E), where D [cm] and
B2 [1/cm2] are the effective diffusion coefficient and
geometric buckling of the reactor. A uniformly dis-
tributed control absorber can be used to keep the
reactor in the critical configuration. Note that the
control absorber concentration for this pin-cell
model is conceptually different from that of a criti-
cal reactor, as it models neutron sharing between
fresh and depleted fuel as well as criticality control.

It is now possible to recast the transport equation
in an approximate form where the spatial and
energy variables have been decoupled. The govern-
ing equations for the energy-dependent fluxes in
the fuel and moderator/coolant regions are coupled
via the probabilities P0 and P1 and can be written

½R0ðEÞ þ DðEÞB2�/0ðEÞ

¼ ð1�P0ðEÞÞ
Z 1

0

dE0/0ðE0ÞRs;0ðE0 ! EÞ
�

þ vðEÞ
Z 1

0

dE0/0ðE0Þm0ðE0ÞRf ;0ðE0Þ
�

þ V 1

V 0

P1ðEÞ
Z 1

0

dE0/1ðE0ÞRs;1ðE0 ! EÞ
�

þ vðEÞ
Z 1

0

dE0/1ðE0Þm1ðE0ÞRf ;1ðE0Þ
�

ð11Þ

and

½R1ðEÞ þ DðEÞB2�/1ðEÞ

¼ ð1�P1ðEÞÞ
Z 1

0

dE0/1ðE0ÞRs;1ðE0 ! EÞ
�

þ vðEÞ
Z 1

0

dE0/1ðE0Þm1ðE0ÞRf ;1ðE0Þ
�

þ V 0

V 1

P0ðEÞ
Z 1

0

dE0/0ðE0ÞRs;0ðE0 ! EÞ
�

þ vðEÞ
Z 1

0

dE0/0ðE0Þm0ðE0ÞRf ;0ðE0Þ
�
; ð12Þ

where the numerical subscripts again refer to the
spatial regions, V is the volume region [cm3] and
all other terms are as previously defined. Note that
Eqs. (11) and (12) allow for the possibility of fission
occurring in the annular, rather than the central re-
gion, a situation that would occur with a reactor
such as the GT-MHR.

2.2. Fuel and moderator/coolant escape and

transmission probabilities

The energy-dependent transport probabilities P0

and P1 are defined in Eqs. (4) and (5) in terms of
region-to-region escape (P0 and P1) and transmis-
sion (T0 and T1) probabilities. These may be formu-
lated in terms of geometric and material properties
as outlined below.

T0 and P0: The probability that a neutron enter-
ing the fuel will be transmitted without interaction,
T0, can be determined using a cosine-distributed
point source at the boundary of the fuel region. This
point source represents the neutrons entering the
fuel from the moderator. We derive T0 by calculat-
ing the fraction of neutrons that pass through the
pin without incident. The transmission probability
can then be written

T 0 ¼
S=2�

R
V dV R/ðq0Þ
S=2

; ð13Þ

which is found to be a function of the dimensionless
fuel pin thickness, Rd, where R is the transport cross
section within the pin and ‘d’ is a characteristic
length, i.e. thickness for a plate, diameter for a
sphere or cylinder. Closed-form expressions for T0

can be obtained for each of these geometries.
The probability that a neutron, having had its

last interaction in the fuel, will escape to the moder-
ator/coolant, P0, is then given by the reciprocity
relationship

1� T 0 ¼
4V R

A
P 0; ð14Þ

where V/A is t/2 for plates, r/2 for cylinders and
plates and r/3 for a spheres and ‘r’ is the fuel pin
radius [cm] and ‘t’ is thickness [cm]. For an infinite
cylindrical fuel pin of radius ‘r’, and a = Rr, it can
be shown that P0 is well approximated by

P 0 ¼
1þ ðcþ 2=3Þaþ 8=3ca2

1þ ðcþ 2Þaþ ð2cþ 4=3Þa2 þ 16=3ca3
; ð15Þ

where ‘c’ is a fitting parameter. Eq. (15) goes to
1 � a(4/3) as ‘a’ goes to zero and to 1/(2a) � 3/
(32a3). The use of Eq. (15), a rational approximation,
is computationally inexpensive and introduces negli-
gible error. A value of c = 0.3567 gives P0 its exact
value of 0.40715 [17] at a = 1.
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T1 and P1: The probability that a neutron enter-
ing the moderator/coolant from the fuel will be
transmitted without interaction and thus re-enter a
fuel pin, T1, is known as the Dancoff factor. Except
for the case of slab geometry, computation of T1 is
considerably more involved than that of P0 or T0,
since the moderator/coolant region of a lattice is
not convex.

The original work in this area treated the prob-
lem in a general manner, resulting in tabulation of
the Dancoff factor for parallel circular cylinders as
a function of two dimensionless parameters: the
pin radius to pitch ratio, B = r/p, and the pin radius
measured in moderator mean free paths, a = R1r

[18]. The shortcoming of these tabulated values is
that they quantify nearest-neighbor rod-shadowing
effects only. Especially in the case of high-energy
neutrons, where the mean free path in the modera-
tor is large compared to the pitch, this shortcoming
results in substantial error.

The most commonly pursued strategy for accu-
rate computation of T1 is Monte Carlo integration
over all neutron trajectories. Several code packages
are in use to perform this calculation [19]. We have
also developed a Monte Carlo code for cylindrical
geometries that closely reproduces the results of
other codes [20] but with computational savings
[21]. A plot of the Dancoff factor, for cylindrical
pins in a square lattice, as a function of Rr and
V1/V0, applicable to the test case used in this study
is shown in Fig. 2. Here V1/V0 (the hydraulic radius)
is twice the volume to surface ratio of the moderator
region [21].
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Fig. 2. Dancoff factor. The Dancoff factor for different fuel cell
fuel pin to moderator volume ratios are shown. Here ‘l’, the
hydraulic radius, is twice the volume to surface ratio of the
moderator region [Barratt, 2003].
Three of the four probabilities are thus deter-
mined by closed-form or Monte Carlo analysis.
The fourth, P1, is the probability that a neutron
which had its last interaction in the moderator is
transmitted to the fuel without further interaction.
This can be determined using the reciprocity rela-
tionship of Eq. (6).

2.3. Determining the lethargy dependent flux

Using the multigroup formulation, we discretize
the energy spectrum into N groups. It is useful to
reformulate the problem in terms of the lethargy u

u ¼ ln
E
E0

; ð16Þ

where E0 is chosen to be the upper boundary of the
highest-energy group. Since over 99% of fission
neutrons are born at E < 10 MeV, we take
E0 = 10 MeV as a practical upper boundary for
our calculations. We divide lethargy space into two
conceptual regions: the epithermal/fast region (here-
after referred to as ’fast’), into which fission neutrons
are born and resonance absorption predominates,
and the thermal region, where energy gain via
upscattering becomes significant. Since no apprecia-
ble upscattering occurs for neutrons with energies
greater than 1 eV, we choose this as a cutoff between
the two regions.

Several energy discretization structures are
currently in common use [22]. For fast reactors, or
when fine resolution is desired in the epithermal
region, the LANL-70, CSEWG or VITAMIN-E
group structures are often employed. Structures
intended to address the thermal region include
EPRI-CPM 69-group and LASER-THERMOS.
Two examples of more comprehensive structures
that span the entire energy range of interest in reac-
tor physics are LANL-187 and GAM-II. The bulk
of these structures were laid out to address neutron
spectra arising in specific reactor types, or to thor-
oughly treat resonance absorption in one or more
nuclides of particular interest. In order to preserve
the general applicability of the current model, we
select a very fine group structure in the fast region
and coarser one at low energies. In this way the
model maintains sufficient resolution to handle the
resonance absorbers whose presence might not be
known a priori. The initial group spacing is chosen
to be Du = 0.2303 in the thermal region and Du =
0.02303 at higher energies, Fig. 3. However, this
hyperfine structure is not maintained through an



Fig. 3. Neutron flux vs lethargy. (a,b) The end of life neutron
spectra from this model for case 7 of the IA Benchmark with a
course group structure (a) and a fine group structure (b). (c) The
spectra from the IA Benchmark showing data from 14 different
international groups. The lethargy scale is shown at the bottom of
(c) and the vertical axis’ are neutron flux [n/cm2/s]. The vertical
scale for (c) was reported in ‘arbitrary units’ and was multiplied
by 1014 to make it consistent with (a,b). The difference between
(a,b) and (c) is the result of differences in group structures
employed in the simulations.
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entire calculation, rather it is coarsened based upon
the results of a single sweep in energy to become
Du = 0.2303 in the fast region as well.

In both the thermal and fast regions, we define a
groupwise flux [n/cm2/s] for group g as

/g ¼
Z

g
du/ðuÞ; ð17Þ

where subscripts denoting spatial regions have been
dropped for clarity. In most cases we can assume a
flux profile constant in lethargy far from isolated
resonances, and since our group structure is rela-
tively fine, this choice does not have a large impact
on the numerical value of the group constants
themselves.

Other group averaged quantities of importance
to the current model are
Sg ¼
R

g duSðuÞ/ðuÞ
/g

ð18Þ

and

Kg0!g ¼
R

g0 du0
R

g duKðu0 ! uÞ/ðu0Þ
/g

; ð19Þ

where S is a cross section or other array of point-
wise values in lethargy (R, Ra, m, etc.) and K is any
kernel, i.e. Rs(u

0 ! u). For cross sections, these def-
initions are seen to preserve the correct interaction
rates. The effective diffusion coefficient for a group
is calculated for the homogeneous reactor (i.e., with
the two spatial regions ‘smeared’) by

Dg ¼
ðV /Þ0 þ ðV /Þ1

3½ðV /RÞ0 þ ðV /RÞ1�

� �
g

ð20Þ

in which we have returned to use the numerical sub-
scripts to denote spatial regions in the reactor and R
is obtained using Eq. (15).

Calculation of self-shielded resonance cross sec-
tions is of critical importance in determining neutron
spectra in both fast and thermal reactors. The pres-
ent model addresses both types of spectra, and is
intended to treat a broad range of fuel compositions
and temperatures, which complicates the computa-
tion of these cross sections. Hence we choose to treat
group-averaged cross sections in the resonance
region as being functions of two parameters, the
temperature and a background cross section s [barns
per resonance absorber atom] that quantifies the
dilution of the resonance absorber. The dependence
of a group constant rg on these quantities is captured
by the self-shielding f-factor [22]

f ¼ rðT ; sÞ
rðT ; s!1Þ : ð21Þ

Both r(T,1) and f(T, s) are then tabulated, for a
number of temperatures and background cross sec-
tions, from the ENDF database using NJOY, with
f(T, s) calculated in a manner consistent with the
Bondarenko method [23]. Our choice of a group
structure reduces any error that might be induced
due to the inaccuracy of this weighting function
appropriate for the reactor type and fuel composi-
tion being considered.

In its simplest form, the Bondarenko model
smears the fuel pin geometry into a single spatial
region, so that, if N nuclides are present, the back-
ground cross section for the ith nuclide, si, can be
written
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si ¼
1

ai

XN

k 6¼i

akrk: ð22Þ

Here ak is the atom fraction of the kth nuclide and
rk is its total microscopic cross section. We may
generalize this expression to be consistent with our
two spatial region formulation by defining a macro-
scopic escape cross section Re0 in terms of the prob-
ability P0 as

P0 ¼
Re

Re þ R

� �
0

: ð23Þ

A macroscopic escape cross section Re1 for neu-
trons born in Region 1 may be analogously defined.
Observe that we can write the microscopic escape
cross section re0 as

re0 ¼
P

1�P

� �
0

r0 ¼
P

1�P

� �
0

XN

k

akrk; ð24Þ

where the sum is carried out over all nuclides in Re-
gion 0, including the resonance absorber. The back-
ground cross section given in (22) may then be
written for the two region formulation as

si;0 ¼
1

ai;0
re þ

XN

k 6¼i

akrk

 !
0

: ð25Þ

Now the summation is carried out only over the
nuclides in Region 0. The escape cross section is
seen to simulate the presence of another back-
ground absorber, capturing the effect of interac-
tions taking place in Region 1. Combining (24)
and (25) leads to the final expression for the back-
ground cross section perceived by the ith nuclide
in Region 0

si;0 ¼
P

1�P
ri þ

1

ai

XN

k 6¼i

1

1�P
rkak

 !
0

: ð26Þ

An analogous expression pertains to the back-
ground cross sections perceived by any resonance
absorbers present in Region 1.

This escape probability formulation thus intro-
duces the group averaged cross section of the
resonance absorber into the equation for the back-
ground cross section it experiences. Also some of
the other nuclides whose cross sections appear in
Eq. (26) may themselves be resonance absorbers,
and the probabilities P0 and P1 are themselves
functions of the resonance absorber cross sections.
A simple iterative scheme, in which all resonance
absorbers are initially assumed to be present at infi-
nitely dilute concentration for the initial calculation
of P0 and P1, is used. This scheme has been found
to converge very quickly in practice.

To account for neutron leakage from the core, we
use the well-known approximation from diffusion
theory, that leakage is proportional to an effective
diffusion coefficient and the reactor geometric buck-
ling. Reactors are generally configured as square cyl-
inders. However, even if an infinite reflector thickness
is assumed, calculation of the buckling is a laborious
procedure. Therefore, we choose to obtain the geo-
metric buckling for an infinitely reflected spherical
reactor of the same volume as the actual, cylindrical
reactor, see [Lamarsh], for a discussion of the validity
of this assumption.

Using the multigroup formalism, and assuming
that fissions only occur in the fuel, we can now write
Eqs. (11) and (12) as a set of coupled, linear alge-
braic equations in lethargy

ðR0 þ DB2Þi/0;i

¼ ð1�P0;iÞ
XN

j¼1

Rs;0ðj! iÞ/0;j þ Rvi

" #

þ V 1

V 0

P1;i

XN

j¼1

Rs;1ðj! iÞ/1;j ð27Þ

and

ðR1 þ DB2Þi/1;i

¼ V 0

V 1

P0;i

XN

j¼1

Rs;0ðj! iÞ/0;j þ Rvi

" #

þ ð1�P1;iÞ
XN

j¼1

Rs;1ðj! iÞ/1;j; ð28Þ

where we have replaced the fission source terms with
a discretized probability distribution (denoted by Xi

and subject to the condition that the sum over
Xi = 1) with R being the neutron birth rate per unit
volume. Numerical subscripts again refer to spatial
regions, ‘i’ and ‘j’ denote respective group numbers.

Eqs. (27) and (28) are then implemented with a
110 group structure labeled in order of increasing
lethargy. We are thus confronted with solving 2N

coupled algebraic equations that are linear in the
/ with the coupling present in many parameters:
Rs and Xi, the diffusion coefficient D and the prob-
abilities Pi.

For groups 1 through 70 (i.e. E > 1 eV), we have a
triangular system of equations with known source
terms. These may be solved successively. The equa-
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tions describing the thermal spectrum (groups 71
through 110) are solved separately, with the source
terms written to include inscattering from the high-
energy groups. In this energy regime (E < 1 eV),
the isotopic scattering kernels include significant
upscattering components as well as, in some cases,
lattice effects. Therefore, we assemble groupwise
scattering transfer functions from ENDF S(a,b)
data as processed by the NJOY THERMR and
GROUPR modules. The resultant 80 · 80 system
of densely coupled equations is solved by LU
decomposition.

Once the calculation is complete, we have
obtained the flux distribution for the assumed value
of the volumetric neutron production rate, R. This
solution can be iterated on the control absorber
concentration until the number of fission neutrons
produced is in fact equal to R; a procedure that is
equivalent to imposing the condition q = 0. This
computation iteratively updates the control absor-
ber concentration until the criticality condition

XN

i¼1

ðmRf/Þi ¼ R ð29Þ

is satisfied. Near the end of fuel residence time, it is
possible for Eq. (20) to imply a negative control
absorber concentration. Physically this corresponds
to a local multiplication constant that is less than
one: the burned-out fuel pin being modeled ‘bor-
rows’ neutrons from adjacent fresher fuel for the
chain reaction to be maintained. When such a sce-
nario holds, we fix the control absorber concentra-
tion to be zero and allow the local reactivity to
become negative.
2.4. Benchmarking of results

For over a decade the criticality working
group of the Nuclear Energy Agency (NEA) has
researched the methods and data required for calcu-
lation of burn-up credit in criticality safety. In 1994
and 2003 a series of benchmark standards were pub-
lished for simulations in UOX and MOX burning
LWRs which appear in the subsequent OECD/
NEA Phase 1A and Phase IVA, B reports [16,24].
In all cases a benchmark standard which specified
geometry, fuel make up, water density and other rel-
evant parameters was outlined by the NEA and var-
ious institutions from around the world were
solicited to submit simulations showing results such
as isotopic composition, kinf, and reaction rates. We
describe the individual benchmark studies briefly,
referring the reader to the reports for the details
of each benchmark case.

The Phase 1A report considered a UOX bench-
mark problem, with an infinite array of simple
PWR unit cells [16]. The simulations were per-
formed for burnups of 30 and 40 MWd/t with 1
and 5 years of cooling time. Fifteen fission products
(FP) were tracked along with the actinides U-234,
235, 236, 238; Pu-238, 239, 240, 241, 242; Am-241,
243 and Np-237, with kinf also reported. The aver-
age of the results from the 25 submitted simulations
were provided along with the relevant standard
deviations. We compare simulations done with our
code to the results presented for cases 1, 4 and 5
of the benchmark study.

The Phase IV-A benchmark calculated infinite
PWR fuel pin-cell reactivity for fresh and irradiated
fuels in full MOX cores. The study considered the
impact of different initial plutonium isotopic com-
positions in the MOX fuel associated with first-gen-
eration MOX, weapons plutonium and multiple
MOX recycle. Simulations were done for burnups
of 20, 40 and 60 MWd/t with cooling periods of
one and five years. Thirty-seven simulations were
submitted to the Phase IV-A benchmark, which
reports their average and standard deviation. The
benchmark study reported only kinf and we compare
results obtained with our code to those presented
for core cases 1, 10, 20, 29, 39 and 51.

The Phase IV-B benchmark considered MOX
fuels that would be irradiated in a mixed UO2-
MOX PWR core, alongside UO2 fuel assemblies
with an initial enrichment of 4.3 w/o U-235 /U
[24]. Two plutonium vectors were considered, one
appropriate to typical plutonium derived from
reprocessed thermal reactor UO2 fuels and another
appropriate to plutonium from dismantled weap-
ons. Each plutonium vector was considered in a
supercell calculation for a MOX assembly together
with three UO2 fuel assemblies, a MOX-only core
representation with reflective boundary conditions
and a simple MOX pin-cell calculation (using the
average MOX fuel composition) with pin-cell geom-
etry that conserves the fuel-to-moderator ratio of
the whole assembly with reflective boundary condi-
tions. We compare results only with the latter case.
The study tracked isotope concentrations as well as
kinf and gave temporal data for the major uranium,
plutonium, americium and curium isotopes. The
results reported were the averages and standard
deviations from the nine submitted simulations.
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3. Results and discussion

Figs. 4–6 show a comparison of the isotopic prev-
alence vs burnup for Cm-242, Np-237, Am-243,
242m, 241, Pu- 242, 240, 241, 238 and 239 as given
by the present model, MONTEBURNS and the
OECD/NEA Phase IV-B benchmark. The error
bars in the figures correspond to the standard devi-
ations for data presented in the latter study. As can
be seen the present model shows strong fidelity to
the homogeneous core benchmark values in all cases
and gives results that are within the standard devia-
tions for the OECD/NEA values for every isotope
except Pu-241, for which it is close. Figs. 4–6 are
representative of the correspondence between the
present model and the Phase IV-B benchmark
results for all 24 isotopes that it tracks.

Table 2 shows a comparison of the kinf values for
cases 1, 4 and 5 of the OECD/NEA Phase 1A bench-
mark with those given by this model along with
benchmark standard deviations. Table 3 shows a
comparison of the kinf values for cases 1, 10, 20,
29, 39 and 51 of the Phase 4A benchmark with those
given by this model along with benchmark standard
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Fig. 4. Am-241 and Am-243 prevalence. The prevalence of
Am-241 predicted with this model and compared with NEA
benchmark and a MONTEBURNS simulation along with the
prevalence of Am-243 predicted with this model and compared
with NEA benchmark and a MONTEBURNS simulation. The
standard deviations represent those for the relevant averages
from the NEA benchmark.

deviations represent those for the relevant averages from the
NEA benchmark. In all cases the current model gives predictions
that are in close agreement with those of the NEA benchmark.
deviations. As with the time dependent isotope prev-
alence, the results are very close in all cases. Table 4
shows a comparison of the Phase 1A endpoint iso-
tope concentrations (at 40 MWd/kg) as compared
with those predicted by the present model. All values
are within 13% of the OECD/NEA results and while
no standard deviations were given for the latter data,
Figs. 2–6 suggest that the results given by the present
model would fall within this range.

By creating a two region model of a nuclear reac-
tor core that uses collision probability approxima-
tions to the neutron transport equation we were
able to determine the energy-dependent neutron flux
in a manner that preserves the overall interaction
rate within the core. Comparison of results from
this model with data from the OECD/NEA bench-
mark criticality studies, and with simulations done
using MONTEBURNS, shows a very high degree
of fidelity for homogenous core loadings. This,
coupled with a run time of 30 seconds or less on a
1 GHz Pentium based computer, make the present
model an excellent choice for high level analyses
of nuclear fuel cycles. Because of its restricted
spatial resolution, however, it would not be applica-



Table 2
Phase 1A kinf values compared with those obtained with our
model

kinf This model OECD Diff 2*r

kinf (Case 1) 1.445 1.439 0.006 0.017
kinf (Case 4) 1.255 1.246 0.009 0.011
kinf (Case 5) 1.199 1.188 0.011 0.012

The standard deviation for the OECD results is r.

Table 3
Phase 1A endpoint isotope concentrations (at 40 MWd/kg)
compared with those obtained with our model

Isotope This model OECD % Diff

U235/U 8.383E�03 8.460E�03 �0.91
U236/U 4.989E�03 5.120E�03 �2.56
Pu/FHM 1.124E�02 1.132E�02 �0.79
Np/FHM 6.245E�04 6.413E�04 �2.63
Pu238/Pu 2.345E�02 2.081E�02 12.67
Pu239/Pu 5.461E�01 5.525E�01 �1.16
Pu240/Pu 2.378E�01 2.203E�01 7.98
Pu241/Pu 1.381E�01 1.509E�01 �8.45
Pu242/Pu 5.447E�02 5.551E�02 �1.87
Am241/FHM 4.967E�05 4.877E�05 1.85
Am243/FHM 1.439E�04 1.546E�04 �6.91

No standard deviation is reported for the OECD simulations
because only one research group reported isotopic
concentrations.
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Table 4
Phase 4A Benchmark kinf compared to those obtained with our
model

Case: Pu-vector/
burnup

OECD This model r Diff

1: A/0 1.3021 1.3002 0.0045 0.0019
10: A/60 1.1810 1.1809 0.0043 0.0001
20: B/0 1.4065 1.4141 0.0049 �0.0076
29: B/60 1.1679 1.1714 0.0035 �0.0035
39: C/0 1.2108 1.1957 0.0053 0.0151
51: C/60 1.1563 1.1459 0.0058 0.0104

The standard deviation for the OECD results is r.
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ble to fuel management simulations in which the
composition and reactivity of individual fuel rods
is important. In its present form, it is also not appli-
cable to certain heterogeneous fuel loadings where
internodal coupling dominates the neutron number
density and energy distribution in a given pin. How-
ever, less strongly heterogeneous systems (such as
assembly wise heterogeneous MOX or inert matrix
fuel loadings) have yielded good results using the
homogenized idealization [25]. Indeed, this idealiza-
tion finds widespread use in sophisticated reactor
burnup packages such as the COSI system used
by the Commissariat l’Energie Atomique in France
[26].
To date fuel cycle analyses have been hindered by
their dependence on externally performed reactor
physics simulations, in large part because of the
computation time and complexity involved in the
latter. This is especially true for time dependent fuel
cycle simulations involving diverse, interacting reac-
tor fleets. Because of its speed, ability to analyze a
broad range of reactor configurations and fuel types,
with good accuracy, the model we present represents
a significant advance in the tools that are available
for analysis of nuclear fuel cycles. As such, integra-
tion of this model into a dynamic reactor fleet anal-
ysis package is proceeding.
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